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Topological Studies of Dioxo Derivatives of
Benzenoid Hydrocarbons: Number of Kekulé
Structures of Dioxo Derivatives of Prolate
Rectangles and a Connection to Hypericin
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Summary. Among the sixteen possible tautomers of hypericin, the 7,14-dioxo tautomer is
thermodynamically the far most stable one. Earlier studies revealed that this is a consequence of the
high degree of (stabilizing) cyclic conjugation of the m-electrons in the 7,14-dioxo tautomer,
paralleled with a much greater number of Kekulé structures than in other tautomers or in the parent
benzenoid hydrocarbon. In order to better understand this phenomenon, a generalization is
examined: the Kekulé structure count in prolate rectangles R(m,n) and their dioxo derivatives
Rjj(m,n). It is shown that R(2,3) =phenanthro[1,10,9,8-opgralperylene, the parent hydrocarbon of
hypericin, and its dioxo derivative R, ,(2,3)=phenanthro[1,10,9,8-opgra]perylene-7,14-dione, are
exceptional in some of their 7-electron properties.
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Topologische Studien an Dioxoderivaten benzenoider Kohlenwasserstoffe: Anzahl der
Kekulé-Strukturen von Dioxoderivaten gestreckter Rechtecke und eine Verbindung zu Hypericin

Zusammenfassung. Unter den sechzehn moglichen Tautomeren des Hypericins ist das 7,14-Dioxo-
Tautomere das thermodynamisch bei weitem stabilste. Frithere Studien haben gezeigt, daf dies eine
Folge des hohen (stabilisierenden) Anteils an zyklischer Konjugation der n-Elektronen im 7,14-
Dioxo-Tautomer ist, welche von der hochsten Anzahl von Kekulé-Strukturen unter allen Tautomeren
des benzolischen Grundkdrpers begleitet wird. Um dieses Phidnomen besser zu verstehen, wird eine
Generalisierung untersucht: die Anzahl der Kekulé-Strukturen in gestreckten Rechtecken R(m, n) und
ihren Dioxoderivaten R;;(m,n). Es wird dabei gezeigt, da3 R(2,3) = Phenanthro[1,10,9,8-opgra]per-
ylen, der Grundkorper des Hypericins, und sein Dioxoderivat R ,(2,3) =Phenanthro[1,10,9,8-
opgra]perylen-7,14-dion einzigartig hinsichtlich einiger ihrer w-elektronischen Eigenschaften
sind.

Introduction

Tautomerism in hypericin (Fig. 1; for a review, see Ref. [1]) has recently attracted
much interest, both experimentally [2-9] and theoretically [3, 10-13]; tautomerism
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Fig. 1. Four of the 16 theoretically possible tautomers of hypericin [11]; shading indicates the

conjugated domains; the most stable tautomer, with the oxo groups in positions 7 and 14, has 24

Kekulé structures; the significantly less stable 1,7-dioxo, 1,6-dioxo, and 1,8-dioxo tautomers [11, 12]

have 6, 14, and 10 Kekulé structures, respectively; these Kekulé structure counts should be compared
with K =16 of the parent benzenoid hydrocarbon, phenanthro[1,10,9,8-opgra]perylene

and isomerism in some structurally closely related compounds have also been
studied [14-16]. All these researchers lead to the conclusion that — if intermolecular
interactions (including solvent effects) are neglected — the 7,14-dioxo species is the
thermodynamically most stable tautomer of hypericin. For instance, the heat of
formation of the 7,14-dioxo tautomer was found to be 45 and 83 kJ/mol below the
heats of formation of the next-stable 1,7- and 1,6-dioxo tautomers, respectively [12].

It has been demonstrated that the stability order of the tautomers of hypericin is
essentially the same as the stability order of the dioxo derivatives of the parent
benzenoid hydrocarbon phenanthro[1,10,9,8-opgralperylene [16]. In other words,
the dominant factors determining the (relative) stability of hypericin tautomers are
the same as the factors determining the (relative) stability of the dioxo derivatives
of the respective benzenoid hydrocarbon. These latter factors are reasonably well
understood [17] and can be traced back to the effects of cyclic conjugation of the
m-electrons. A simple, yet not quite unreliable measure of the extent of cyclic
conjugation in a benzenoid hydrocarbon is the number of its Kekulé structures
[17, 18].

In fact, phenanthro[1,10,9,8-opgra]perylene-7,14-dione (cf. Ref. [19]) is the
only dioxo derivative of phenanthro[1,10,9,8-opgralperylene having more Kekulé
structures (K =24) than the parent hydrocarbon itself (K= 16). This observation
led to the introduction of the concept of ‘topological activation’ [20, 21].

Let B be a benzenoid hydrocarbon and B;; its dioxo derivative with the oxo
groups in positions 7 and j. Let K(B) and K(B;;) be the respective Kekulé structure



Kekulé Structures of Benzenoid Hydrocarbons 49

R(m,n) R?j (m,n)

Fig. 2. The prolate rectangle R(m,n), its dioxo derivative R;(m,n), and the auxiliary benzenoid
system R} (m,n); note that K(R;i(m,n)) = (R} (m,n))

counts. Then the sites i and j of B are said to be ‘topologically activated,
topologically indifferent’, and ‘topologically deactivated’ if K(B;)/K(B)>1, =1,
and <1, respectively [20, 21]. Oxidation, Diels-Alder addition, and similar
reactions which interrupt the conjugated m-electron system of the molecule B
usually occur at topologically activated positions; the most stable tautomer of
hypericin is that with oxo groups in the (unique!) topologically activated positions.
If a benzenoid hydrocarbon has no topologically activated sites, it is chemically
very stable. If, in turn, it has several such sites, it is highly reactive, sensitive to air,
etc. [20].

Phenanthro([1,10,9,8-opgralperylene, the parent hydrocarbon of hypericin, is a
member of the class of benzenoid hydrocarbons classified as ‘prolate rectangles’
[18], denoted here by R(m,n), the structure of which is depicted in Fig. 2. In
particular, phenanthro[1,10,9,8-opgralperylene = R(2,3).

In the following the systems R(m, n) and the topological activation/deactivation
of their sites are examined. For this purpose it is necessary to know the number of
Kekulé structures of R(m,n) and the respective dioxo derivatives R;j(m,n) (see
Fig. 2). The analysis will show that R(2,3) is quite exceptional with regard to the
topological activation/deactivation of its sites.

Methods

Kekulé structures have been enumerated for quite a few classes of benzenoid hydrocarbons,
especially by the outstanding work of Sven Cyvin (see for instance Refs. [22-29], [18], and the
references cited therein). The number of Kekulé structures of prolate rectangles has been known for
some time [30]:

K(R(m,n)) = (n+1)" )

It, thus, remains to find an expression for K(R;(m,n)). In order to simplify the notation, K;;(m, n)
shall be written instead of K(R;;(m, n)) in the following. For reasons that will become evident below,
K;j(m,n) will be considered as the (i, j)-entry of a matrix K(m,n). Clearly, K(m,n) is a symmetric
square matrix of order n.
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Fig. 3. The dioxo derivative R;(1,n) and its conjugated domains

The first case considered will be that with m = 1. From Fig. 3 can be seen that R;;(1, n) has two
disjoint conjugated domains, both being linear polyacenes. Because a linear polyacene with A
hexagons has h+1 Kekulé structures, it follows that

in—j+1) if i<j

KU“’"):{jEn_]mg if izj' 2)
It is easy to see that the dioxo derivative R;j(m, n) has the same number of Kekulé structures as the
benzenoid system R;]k- (m, n) (Fig. 2). In order to find an expression for K;;(m, n), color, as usual [17,
18], the vertices of R;; (m,n) by two colors, say black and white, so that adjacent vertices have
different colors (Fig. 4). Then any double bond in any Kekulé structure of RZ- (m, n) lies between a
black and a white vertex. Therefore, R: (m, n) has equally many (=2mn+ m—1) black and white
vertices.

Consider the horizontal cut C depicted in Fig. 4 and observe that above C there is one black
vertex in excess, whereas below C there is one white vertex in excess., Consequently, in every Kekulé
structure of B; (m, n) exactly one of the edges intersected by C must be a double bond.

Now those Kekulé structures of R; (m,n) in which the double bond intersected by C is located
between the {™ hexagon of the (m—1)™ row and the I™ hexagon of the m™ row, with [ being a fixed
integer between 1 and n, are counted. Then the fragment of R;; (m,n) above C has K;(m — 1,n)
Kekulé structures, whereas the fragment below C has KU(I,n) Kekulé structures. Therefore, the
number of Kekulé structures of Bj(m,n) with the intersected double bond in position [ is
Kiy(m — 1,n) - Kj;(1,n), and the total number of Kekulé structures is

Fig. 4. The system R?; (m,n) with colored vertices; note that above the horizontal cut C there are
(2n+4 1)(m — 1) black and (2n+ 1)(m — 1) — 1 white vertices (hence one black vertex in excess),
whereas below the cut C there are 2n black and 2n+1 white vertices (hence one white vertex in excess)
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Bearing in mind the rules for matrix multiplication we see that
K(m,n) =K(m —1,n) - K(1,n). (3)
Identity (3) holds for all » > 1 and m > 2. By successively substituting m =2,3,. .. into Eq. (3) we get
K(2,n) = K(1,n) - K(1,n) = K(1,n)?
K(3,n) = K(2,n) -K(1,n) = K(1,n)* - K(1,n) = K(1,n)’
K(4,n) = K(3,n) - K(1,n) = K(1,n)* - K(1,n) = K(1,n)*
etc. In the general case,
K(m,n) = K(1,n)". 4)
By combining Eqs. (2) and (4) it is possible to easily compute the values of K;;(m, n) for any i, j, m, n.

In the special cases of m = 2 and m = 3, the following explicit expressions for the number of Kekulé
structures are obtained:

Table 1. Number of Kekulé structures of the dioxo derivatives R;;(m, n) of prolate rectangles (cf. Fig.
2) for n=2,3,4 and m=2,3,4,5; below each Kekulé structure count the respective quotient
K(R;j(m,n))/K(R(m,n)) = K(R;j(m,n))/(n+ 1)" is given; note that because of the symmetry of
the system R(m, n), K;j(m,n) = Kji(m,n) = K, 11— n11-j(m, n) for all values of m and n; therefore, the
data given in Table 1 cover all possible cases

m=2 m=3 m=4 m=>5
n=
i=1,j= 5 14 41 122
0.56 0.52 0.51 0.50
i=1,j=2 4 13 40 121
0.44 0.48 0.49 0.50
n=3
i=1,j=1 14 84 552 3728
0.88 1.31 2.16 3.64
i=1,j=2 16 112 768 5248
1.00 1.75 3.00 5.13
i=1,j=3 10 76 536 3696
0.63 1.19 2.09 3.61
i=2,j=2 24 160 1088 7424
1.50 2.50 4.25 7.25
n=4
i=1,j=1 30 330 4125 53350
1.20 2.64 6.60 17.07
i=1,j=2 40 510 6600 86075
1.60 4.08 10.56 27.54
i=1,j=3 35 490 6525 85800
1.40 3.92 10.44 27.46
i=1,j=4 20 295 4000 52900
0.80 2.36 6.40 16.93
i=2,j=2 65 820 10650 139150
2.60 6.56 17.04 44.53
i=2,j=3 60 805 10600 138975

2.40 6.44 16.96 44.47
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If i <, then

K;(2,n) = éi(n+ Dn+1-7)(1 - =72 +2i(n+1))

1
Ki(3,n) = —i(n+ 1)*(n + 1 —j)(3i* — 152 4+ 1022 — 15/ + 3/*

" 360

+12+42j(n+1)(15 — 102 — 6> + 4j(n + 1) + 4(n + 1)),
whereas for i > j, K;;(2,n) = K;i(2,n) and K;(3,n) = K;;(3,n).

For m > 4, the analogous expressions are still more complicated.

Results and Discussion

1. Gutman

Equation (4) together with Eq. (1) enables one to determine which pairs of sites i,j
of prolate rectangles are topologically activated. In Tables 1 and 2, the K-values of
the systems Rjj(m,n) for 2<n <5 and 2 <m <5 as well as the respective
quotients K (B;;) /K (B) are given. Recall that the sites i, j are topologically activated

if this quotient is greater than unity.

An inspection of the data given in Tables 1 and 2 reveals the following:

DN —

If n=2 and m > 2, then no two sites of R(m,n) are topologically activated.
. If n=3 and m>3 and also if n>4 and m > 2, the system R(m,n) has many

topologically activated sites; more precisely: with only two exceptions, all pairs
of sites i, j are topologically activated. Furthermore, the value of the quotient

Table 2. Number of Kekulé structures of the dioxo derivatives R;;(m, n) of prolate rectangles (cf. Fig. 2)
for n=5 and m=2,3,4,5; for details, see Table 1

m=2 m=3 m=4 m=>5
n=>5
i=1,j=1 55 1001 21307 471185
1.53 4.63 16.44 60.59
i=1,j=2 80 1672 36608 814528
222 7.74 28.25 104.75
i=1,j=3 81 1863 41877 938223
2.25 8.63 32.31 120.66
i=1,j=4 64 1568 35968 810656
1.78 7.26 27.75 104.25
i=1,j=5 35 889 20651 467281
0.97 4.12 15.93 60.09
i=2,j=2 136 2864 63184 1409408
3.78 13.26 48.75 181.25
i=2,j=3 144 3240 72576 1625184
4.00 15.00 56.00 209.00
i=2,j=4 116 2752 62528 1405504
322 12.74 48.25 180.75
i=2,j=5 64 1568 35968 810656
1.78 7.26 27.75 104.25
i=3,j=3 171 3753 83835 1876689
4.75 17.38 64.69 241.34
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K(Rjj(m,n))/K(R(m,n)) is a rapidly increasing function of n and m and reaches
its maximum when the oxo groups in R;(m,n) adopt central positions.
Exceptional cases are the sites i = 1, j = 4 in R(2,4) (which are topologically
deactivated) and i = 1, j=5 in R(2,5) (which are topologically indifferent).

3. Only in the case n=3, m=2 the system R(m,n) has just one pair of
topologically activated sites: i=2, j=2. In other words, among all prolate
rectangles, only R(2,3), phenanthro[1,10,9,8-opgra]perylene, has a unique pair
of topologically activated sites. This makes R(2,3) exceptional within the class
of prolate rectangles, and R, ,(2,3), phenanthro[1,10,9,8-opgra]perylene-7,14-
dione, exceptional within the class of dioxo derivatives of R(2,3).

Whether the above observation is of any relevance for the chemistry of
hypericin and/or for the understanding of its biological role and phylogenic origin
is not clear. It, nevertheless, shows that hypericin possesses a m-electron system
with distinguished and atypical topological properties.
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